Карандаш и циркуль баттерс надпись на парте свойство произведение корней надпись черный плащ надпись на парте нарисованный автобус ручкой

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

Список уроков
Скрыть меню

На главную страницу На главную страницу
Войти при помощи
Войти на сайт через ВКонтакте

Темы уроков


Начальная школа

Математика 5 класс

Математика 6 класс

Алгебра 7 класс

Геометрия 7 класс

Алгебра 8 класс

Алгебра 9 класс

Алгебра 10 класс

Алгебра 11 класс

Математика даёт надёжнейшие правила; кто им следует — тому не опасен обман чувств.Леонард Эйлер
На главную страницу На главную страницу на главную

Деление отрицательных чисел

лупа Скрепки
Поддержать сайтспасибо

Как выполнять деление отрицательных чисел легко понять, вспомнив, что деление — это действие, обратное умножению.

Если «a» и «b» положительные числа, то разделить число «a» на число «b», значит найти такое число «с», которое при умножении на «b» даёт число «a».

Данное определение деления действует для любых рациональных чисел, если делители отличны от нуля.

Поэтому, например, разделить число «−15» на число 5 — значит, найти такое число, которое при умножении на число 5 даёт число «−15». Таким числом будет «−3», так как

(−3) · 5 = −15

значит

(−15) : 5 = −3

Примеры деления рациональных чисел.

  1. 10 : 5 = 2, так как 12 · 5 = 10
  2. (−4) : (−2) = 2, так как 2 · (−2) = −4
  3. (−18) : 3 = −6, так как (−6) · 3 = −18
  4. 12 : (−4) = −3, так как (−3) · (−4) = 12

Из примеров видно, что частное двух чисел с одинаковыми знаками — число положительное (примеры 1, 2), а частное двух чисел с разными знаками— число отрицательное (примеры 3, 4).

Правила деления отрицательных чисел

Чтобы найти модуль частного, нужно разделить модуль делимого на модуль делителя.

Итак, чтобы разделить два числа с одинаковыми знаками, надо:

  • модуль делимого разделить на модуль делителя;
  • перед результатом поставить знак «+».

Примеры деления чисел с одинаковыми знаками:

  • (−9) : (−3) = +3
  • 6 : 3 = 2

Чтобы разделить два числа с разными знаками, надо:

  • модуль делимого разделить на модуль делителя;
  • перед результатом поставить знак «».

Примеры деления чисел с разными знаками:

  • (−5) : 2 = −2,5
  • 28 : (−2) = −14

Для определения знака частного можно также пользоваться следующей таблицей.

Правило знаков при делении

+ : (+) = + + : () =
: () = + : (+) =

При вычислении «длинных» выражений, в которых фигурируют только умножение и деление, пользоваться правилом знаков очень удобно. Например, для вычисления дроби

вычисление длинных выражений с отрицательными числами

Можно обратить внимание, что в числителе два знака «минус», которые при умножении дадут «плюс». Также в знаменателе три знака «минус», которые при умножении дадут «минус». Поэтому в конце результат получится со знаком «минус».

Сокращение дроби (дальнейшие действия с модулями чисел) выполняется также, как и раньше:

вычисление длинной отрицательной дроби
Запомните! !

Частное от деления нуля на число, отличное от нуля, равно нулю.

0 : a = 0,   a ≠ 0

Делить на ноль НЕЛЬЗЯ!

Все известные ранее правила деления на единицу действуют и на множество рациональных чисел.

  • а : 1 = a
  • а : (−1) = −a
  • а : a = 1
, где «а» — любое рациональное число.

Зависимости между результатами умножения и деления, известные для положительных чисел, сохраняются и для всех рациональных чисел (кроме числа нуль):

  • если a · b = с;     a = с : b;     b = с : a;
  • если a : b = с;     a = с · b;     b = a : c

Данные зависимости используются для нахождения неизвестного множителя, делимого и делителя (при решении уравнений), а также для проверки результатов умножения и деления.

Пример нахождения неизвестного.

x · (−5) = 10

x = 10 : (−5)

x = −2

Знак «минус» в дробях

Разделим число «−5» на «6» и число «5» на «−6».

Напоминаем, что черта в записи обыкновенной дроби — это тот же знак деления, поэтому можно записать частное каждого из этих действий в виде отрицательной дроби.

знак минус в дроби

Таким образом знак «минус» в дроби может находиться:

  • перед дробью;
  • в числителе;
  • в знаменателе.
знак минус перед дробью, в числителе, в знаменателе
Запомните! !

При записи отрицательных дробей знак «минус» можно ставить перед дробью, переносить его из числителя в знаменатель или из знаменателя в числитель.

Это часто используется при выполнении действий с дробями, облегчая вычисления.

Пример. Обратите внимание, что после вынесения знака «минуса» перед скобкой мы из большего модуля вычитаем меньший по правилам сложения чисел с разными знаками.

сложение отрицательной дроби с положительной дробью

Пример.

сложение рациональных чисел

Используя описанное свойство переноса знака в дроби, можно действовать, не выясняя, модуль какого из данных дробных чисел больше.

пример сложения отрицательной дроби

Ваши комментарии

Важно! Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи «ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

Отправить

нарисованный автобус ручкой