Прежде чем перейти к изучению определения «отрицательная степень» рекомендуем повторно
прочитать урок
«Степень»
и «Свойства степеней».
Необходимо уверенно понимать, что такое положительная степень числа и уверенно использовать её свойства в решении
примеров.
Как возвести число в отрицательную степень
Запомните!
Чтобы возвести число в отрицательную степень нужно:
- «перевернуть» число. Записать его в виде дроби с единицой наверху (в
числителе) и с
исходным числом в степени внизу;
- заменить отрицательную степень на
положительную;
- возвести число в положительную степень.
Общая формула возведения в отрицательную степень выглядит следующим образом.
a−n =
,где
a ≠ 0, n ∈ z (
n принадлежит
целым числам).
Примеры возведения в отрицательную степень.
Запомните!

Любое число в нулевой степени — единица.
a0 = 1
,где a ≠ 0
Примеры возведения в нулевую степень.
Как найти 10 в минус 1 степени
В уроке 8 класса «Стандартный вид числа» мы уже сталкивались с записью:
10−1 = 0,1
Теперь, зная определение отрицательной степени, давайте разберемся, почему «10» в минус первой степени равно
«0,1».
Возведем «
10−1» по правилам отрицательной степени.
Перевернем «
10» и запишем её в виде дроби
«
»
и заменим
отрицательную степень
«
−1» на
положительную степень «
1».
Возведем «10» в «1» степень. Помним, что любое число в первой степени равно самому числу.
Теперь по определению десятичной дроби запишем обыкновенную дробь в виде десятичной.
По такому же принципу можно найти «10» в минус второй, третьей и т.д.
10−2 = 0,01
10−3 = 0,001
10−4 = 0,0001
Запомните!
Для упрощения перевода «10» в минус первую, вторую и т.д степени, нужно запомнить правило:
«Количество нулей после запятой равно положительному значению степени минус один».
Проверим правило выше для «10−2».
Т.к. у нас степень «−2», значит, будет всего один ноль (положительное
значение степени «2 − 1 = 1». Сразу после запятой ставим один ноль и за ним «1».
10−2 = 0,01
Рассмотрим «10−1».
Т.к. у нас степень «−1», значит, нулей после запятой не будет (положительное
значение степени «1 − 1 = 0». Сразу после запятой ставим «1».
10−1 = 0,1
То же самое правило работает и для «10−12». При переводе в десятичную дробь будет
«12 − 1 = 11 » нулей и «1» в конце.
10−12 = 0,000 000 000 001
Как возвести в отрицательную степень дробь
Запомните!
Чтобы возвести дробь в отрицательную степень нужно:
- «перевернуть» дробь;
- заменить отрицательную степень на
положительную;
- возвести дробь в положительную степень.
Пример. Требуется возвести в отрицательную степень дробь.
Перевернем дробь «
»
и заменим отрицательную степень «
−3» на положительную «
3».
Возведем дробь в положительную степень по правилу возведения дроби в положительную степень.
Т.е. возведем и числитель «3», и знаменатель «10» в третью степень.
()−3 = ()3 =
=
Для более грамотного ответа запишем полученный результат в виде десятичной дроби.
()−3 = ()3 =
= = 0,027
Как возвести отрицательное число в отрицательную степень
Как и при возведении отрицательного числа в положительную степень, в первую
очередь необходимо определить конечный знак результата возведения в степень. Вспомним основные правила еще раз.
Запомните!
Отрицательное число, возведённое в
чётную степень, — число
положительное.
Отрицательное число, возведённое в
нечётную степень, — число
отрицательное.
Пример.
(−5) −2 =
Перевернем число «−5» и заменим отрицательную степень
«−2»
на положительную
«2».
Так как степень «2» — четная, значит, результат возведения в степень будет
положительный. Поэтому
убираем знак минуса при раскрытии скобок.
Далее откроем скобки
и возведем во вторую степень и числитель «1»,
и знаменатель «5».
Как возвести отрицательную дробь в отрицательную степень
Конечный знак результата возведения в степень отрицательной дроби определяется по тем же правилам, что и для целого отрицательного числа.
Запомните!
Отрицательная дробь, возведённая в
чётную степень, — дробь
положительная.
Отрицательная дробь, возведённая в
нечётную степень, — дробь
отрицательная.
Разберемся на примере. Задание: возвести отрицательную дробь
«
(− )»
в «
−3» степень.
По правилу возведения дроби в отрицательную степень перевернем дробь и заменим отрицательную степень «−3» на положительную
«3».
Теперь определим конечный знак результата возведения в «3» степень.
Степень «3» — нечетная, значит, по правилу возведения отрицательного числа в степень дробь
останется отрицательной.
Нам остается только раскрыть скобки и возвести в степень и числитель «3», и знаменатель
«2» в третью степень.
Для окончательного ответа выделим целую часть из дроби.
Рассмотрим другой пример возведения отрицательной дроби в отрицательную степень.
Правило возведения отрицательного числа в степень гласит: если степень четная, значит, результат возведения
будет положительным.
Свойства отрицательной степени
Все свойства степени, которые используются для положительной степени,
точно также применяются и для отрицательной степени.
В этом уроке мы не будем повторно подробно разбирать каждое свойство степени, но еще раз приведем основные формулы свойств степени
и покажем примеры их использования.
Запомните!
Примеры решений заданий с отрицательной
степенью
Разбор примера
Представить в виде степени.
2) a6 · b6 = (ab)6
4) (c5)2 = c10
Разбор примера
Записать в виде степени с отрицательным числом.
Разбор примера
Вычислить.
Разбор примера
Выполнить действия.