На главную страницу

Войти при помощи

Темы уроков
Начальная школа
- Геометрия: начальная школа
- Действия в столбик
- Деление с остатком
- Законы арифметики
- Периметр
- Порядок действий
- Разряды и классы. Разрядные слагаемые
- Счет в пределах 10 и 20
Математика 5 класс
- Взаимно обратные числа и дроби
- Десятичные дроби
- Натуральные числа
- Нахождение НОД и НОК
- Обыкновенные дроби
- Округление чисел
- Перевод обыкновенной дроби в десятичную
- Площадь
- Проценты
- Свойства сложения, вычитания, умножения и деления
- Среднее арифметическое
- Упрощение выражений
- Уравнения 5 класс
- Числовые и буквенные выражения
Математика 6 класс
- Масштаб
- Модуль числа
- Окружность. Площадь круга
- Отношение чисел
- Отрицательные и положительные числа
- Периодическая дробь
- Признаки делимости
- Пропорции
- Рациональные числа
- Система координат
- Целые числа
Алгебра 7 класс
- Алгебраические дроби
- Как применять формулы сокращённого умножения
- Многочлены
- Одночлены
- Системы уравнений
- Степени
- Уравнения
- Формулы сокращённого умножения
- Функция в математике
Геометрия 7 класс
Алгебра 8 класс
- Квадратичная функция. Парабола
- Квадратные неравенства
- Квадратные уравнения
- Квадратный корень
- Неравенства
- Системы неравенств
- Стандартный вид числа
- Теорема Виета
Алгебра 9 класс
- Возрастание и убывание функции
- Нули функции
- Область определения функции
- Отрицательная степень
- Среднее
геометрическое - Чётные и нечётные функции
Алгебра 10 класс
Алгебра 11 класс


Решение линейных уравнений 7 класс
Поддержать сайт
Для решения линейных уравнений используют два основных правила (свойства).
Свойство № 1
или
правило переноса

При переносе из одной части уравнения в другую член уравнения меняет свой знак на противоположный.
Давайте разберём правило переноса на примере. Пусть нам требуется решить линейное уравнение.

Вспомним, что у любого уравнения есть левая и правая часть.

Перенесем число «3» из левой части уравнения в правую.
Так как в левой части уравнения у числа «3» был знак «+», значит в правую часть уравнения «3» перенесется со знаком «−».

Полученное числовое значение «x = 2» называют корнем уравнения.

Не забывайте после решения любого уравнения записывать ответ.
Рассмотрим другое уравнение.
По правилу переноса перенесем «4x» из правой части уравнения в левую, поменяв знак на противоположный.
Несмотря на то, что перед «4x» не стоит никакого знака, мы понимаем, что перед «4x» стоит знак «+».
5x = +4x + 9
5x − 4x = 9
Теперь приведем подобные и решим уравнение до конца.
x = 9
Ответ: x = 9
Свойство № 2
или
правило деления

В любом уравнении можно разделить левую и правую часть на одно и то же число.
Но нельзя делить на неизвестное!
Разберемся на примере, как использовать правило деления при решении линейных уравнений.

Число «4», которое стоит при «x», называют числовым коэффициентом при неизвестном.

Между числовым коэффициентом и неизвестном всегда стоит действие умножение.
Чтобы решить уравнение необходимо сделать так, чтобы при «x» стоял коэффициент «1».
Давайте зададим себе вопрос: «На что нужно разделить «4», чтобы
получить
«1»?».
Ответ очевиден, нужно разделить на «4».
Используем правило деления и разделим левую и правую части уравнения на «4». Не забудьте, что делить нужно и левую, и правую части.

Используем сокращение дробей и решим линейное уравнение до конца.

Как решить уравнение, если «x» отрицательное
Часто в уравнениях встречается ситуация, когда при «x» стоит отрицательный коэффициент. Как, например, в уравнении ниже.
Чтобы решить такое уравнение, снова зададим себе вопрос: «На что нужно разделить «−2», чтобы получить «1»?». Нужно разделить на «−2».
−2x |
−2 |
10 |
−2 |
x = −5
Ответ: x = −5
Примеры решения линейных уравнений
Рассмотрим другие примеры решения линейных уравнений. Обычно для решения уравнений нужно применять оба свойства (правило переноса и правило деления).
Также требуется вспомнить правило раскрытия скобок и правило приведения подобных.
-
25x − 1 = 9
25x = 9 + 1
25x = 10 |: 25
=25x 25 10 25
x =2 5
Ответ: x =2 5
-
11(y − 4) + 10(5 − 3y) − 3(4 − 3y) = −6
11y − 44 + 50 − 30y − 12 + 9y = −6
11y − 30y + 9y − 44 + 50 − 12 = −6
20y − 30y + 6 − 12 = −6
−10y − 6 = −6
−10y = −6 + 6
−10y = 0 |:(−10)
=−10y −10 0 −10
y = 0
Ответ: y = 0
Ваши комментарии
Оставить комментарий: