На главную страницу
Войти при помощи
Темы уроков
Начальная школа
- Геометрия: начальная школа
- Действия в столбик
- Деление с остатком
- Законы арифметики
- Периметр
- Порядок действий
- Разряды и классы. Разрядные слагаемые
- Счет в пределах 10 и 20
Математика 5 класс
- Взаимно обратные числа и дроби
- Десятичные дроби
- Натуральные числа
- Нахождение НОД и НОК
- Обыкновенные дроби
- Округление чисел
- Перевод обыкновенной дроби в десятичную
- Площадь
- Проценты
- Свойства сложения, вычитания, умножения и деления
- Среднее арифметическое
- Упрощение выражений
- Уравнения 5 класс
- Числовые и буквенные выражения
Математика 6 класс
- Масштаб
- Модуль числа
- Окружность. Площадь круга
- Отношение чисел
- Отрицательные и положительные числа
- Периодическая дробь
- Признаки делимости
- Пропорции
- Рациональные числа
- Система координат
- Целые числа
Алгебра 7 класс
- Алгебраические дроби
- Как применять формулы сокращённого умножения
- Многочлены
- Одночлены
- Системы уравнений
- Степени
- Уравнения
- Формулы сокращённого умножения
- Функция в математике
Геометрия 7 класс
Алгебра 8 класс
- Квадратичная функция. Парабола
- Квадратные неравенства
- Квадратные уравнения
- Квадратный корень
- Неравенства
- Системы неравенств
- Стандартный вид числа
- Теорема Виета
Алгебра 9 класс
- Арифметическая прогрессия
- Возрастание и убывание функции
- Нули функции
- Область определения функции
- Отрицательная степень
- Среднее
геометрическое - Чётные и нечётные функции
Алгебра 10 класс
Алгебра 11 класс
Как использовать сумму кубов a3 + b3
Поддержать сайт
a2 − b2 Как применять квадрат суммы
(a + b)2 Как применять квадрат разности
(a − b)2 Как применять куб суммы
(a + b)3 Как применять куб разности
(a − b)3 Как применять сумму кубов
a3 + b3 Как применять разность кубов
a3 − b3
В предыдущих уроках мы рассмотрели два способа разложения многочлена на множители: вынесение общего множителя за скобки и способ группировки.
В этом уроке мы рассмотрим еще один способ разложения многочлена на множители с применением формул сокращённого умножения.
Прежде чем перейти к этому уроку обязательно выучите наизусть все формулы сокращенного умножения.
Рекомендуем каждую формулу прописать не менее 12 раз. Для лучшего запоминания выпишите все формулы сокращённого умножения себе на небольшую шпаргалку.
Вспомним, как выглядит формула суммы кубов.
a3 + b3 = (a + b)(a2 − ab + b2)Формула суммы кубов не очень проста для запоминания, поэтому рекомендуем использовать специальный способ для её запоминания.
Важно понимать, что любая формула сокращённого умножения действует и в обратную сторону.
(a + b)(a2 − ab + b2) = a3 + b3Как разложить на множители сумму кубов
Рассмотрим пример. Необходимо разложить на множители сумму кубов.
Обратим внимание, что «8x3» — это «(2x)3», значит, для формулы суммы кубов вместо «a» мы используем «2x».
Используем формулу суммы кубов. Только вместо «a3» у нас будет «8x3», а вместо «b3» будет «27y3».
Применение суммы кубов в обратную сторону
Рассмотрим другой пример. Требуется преобразовать произведение многочленов в сумму кубов, используя формулу сокращенного умножения.
Обратите внимание, что произведение многочленов «(p + 1)(p2 − p + 1)» напоминает правую часть формулы суммы кубов «a3 + b3 = (a + b)(a2 − ab + b2)», только вместо «a» стоит «p», а на месте «b» стоит «1».
Используем для произведения многочленов «(p + 1)(p2 − p + 1)» формулу сумму кубов в обратную сторону.
Рассмотрим пример сложнее. Требуется упростить произведение многочленов.
В этом произведении многочленов не так очевидно, что будет являться в формуле «a», а что «b».
Если сравнить «(2a + 3)(4a2 − 6a + 9)» с правой частью формулы суммы кубов «a3 + b3 = (a + b)(a2 − ab + b2), то можно понять, что в первой скобке «(2a + 3)» на месте «a» стоит «2a», а на месте «b» стоит «3».
Теперь представим скобку «(4a2 − 6a + 9)» таким образом, чтобы она соответствовала правой части формулы суммы кубов.
Используем формулу суммы кубов и решим пример до конца.
a2 − b2 Как применять квадрат суммы
(a + b)2 Как применять квадрат разности
(a − b)2 Как применять куб суммы
(a + b)3 Как применять куб разности
(a − b)3 Как применять сумму кубов
a3 + b3 Как применять разность кубов
a3 − b3
Ваши комментарии
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи «ВКонтакте».
Оставить комментарий: