На главную страницу
Войти при помощи
Темы уроков
Начальная школа
- Геометрия: начальная школа
- Действия в столбик
- Деление с остатком
- Законы арифметики
- Периметр
- Порядок действий
- Разряды и классы. Разрядные слагаемые
- Счет в пределах 10 и 20
Математика 5 класс
- Взаимно обратные числа и дроби
- Десятичные дроби
- Натуральные числа
- Нахождение НОД и НОК
- Обыкновенные дроби
- Округление чисел
- Перевод обыкновенной дроби в десятичную
- Площадь
- Проценты
- Свойства сложения, вычитания, умножения и деления
- Среднее арифметическое
- Упрощение выражений
- Уравнения 5 класс
- Числовые и буквенные выражения
Математика 6 класс
- Масштаб
- Модуль числа
- Окружность. Площадь круга
- Отношение чисел
- Отрицательные и положительные числа
- Периодическая дробь
- Признаки делимости
- Пропорции
- Рациональные числа
- Система координат
- Целые числа
Алгебра 7 класс
- Алгебраические дроби
- Как применять формулы сокращённого умножения
- Многочлены
- Одночлены
- Системы уравнений
- Степени
- Уравнения
- Формулы сокращённого умножения
- Функция в математике
Геометрия 7 класс
Алгебра 8 класс
- Квадратичная функция. Парабола
- Квадратные неравенства
- Квадратные уравнения
- Квадратный корень
- Неравенства
- Системы неравенств
- Стандартный вид числа
- Теорема Виета
Алгебра 9 класс
- Арифметическая прогрессия
- Возрастание и убывание функции
- Нули функции
- Область определения функции
- Отрицательная степень
- Среднее
геометрическое - Чётные и нечётные функции
Алгебра 10 класс
Алгебра 11 класс
Формулы сокращённого умножения
Поддержать сайтПри расчёте алгебраических многочленов для упрощения вычислений используются формулы сокращенного умножения. Всего таких формул семь. Их все необходимо знать наизусть.
Следует также помнить, что вместо «a» и «b» в формулах могут стоять как числа, так и любые другие алгебраические многочлены.
Разность квадратов
Разность квадратов двух чисел равна произведению разности этих чисел и их суммы.
a2 − b2 = (a − b)(a + b)Примеры:
- 152 − 22 = (15 − 2)(15 + 2) = 13 · 17 = 221
- 9a2 − 4b2с2 = (3a − 2bc)(3a + 2bc)
Квадрат суммы
Квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа.
(a + b)2 = a2 + 2ab + b2
Обратите внимание, что с помощью этой формулы сокращённого умножения легко находить квадраты больших чисел, не используя калькулятор или умножение в столбик. Поясним на примере:
Найти 1122.
- Разложим 112 на сумму чисел, чьи квадраты мы хорошо помним.
112 = 100 + 12 - Запишем сумму чисел в скобки и поставим над скобками квадрат.
1122 = (100 + 12)2 - Воспользуемся формулой квадрата суммы:
1122 = (100 + 12)2 = 1002 + 2 · 100 · 12 + 122 = 10 000 + 2 400 + 144 = 12 544
Помните, что формула квадрат суммы также справедлива для любых алгебраических многочленов.
- (8a + с)2 = 64a2 + 16ac + c2
Предостережение!
(a + b)2 не равно (a2 + b2)Квадрат разности
Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого на второе плюс квадрат второго числа.
(a − b)2 = a2 − 2ab + b2
Также стоит запомнить весьма полезное преобразование:
(a − b)2 = (b − a)2Формула выше доказывается простым раскрытием скобок:
(a − b)2 = a2 −2ab + b2 = b2 − 2ab + a2 = (b − a)2Куб суммы
Куб суммы двух чисел равен кубу первого числа плюс утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого на квадрат второго плюс куб второго.
(a + b)3 = a3 + 3a2b + 3ab2 + b3
Как запомнить куб суммы
Запомнить эту «страшную» на вид формулу довольно просто.
- Выучите, что в начале идёт «a3».
- Два многочлена посередине имеют коэффициенты 3.
- Вспомним, что любое число в нулевой степени есть 1.
(a0 = 1, b0 = 1). Легко заметить, что в формуле
идёт понижение
степени «a» и увеличение степени
«b». В этом можно убедиться:
(a + b)3 = a3b0 + 3a2b1 + 3a1b2 + b3a0 = a3 + 3a2b + 3ab2 + b3
Предостережение!
(a + b)3 не равно a3 + b3Куб разности
Куб разности двух чисел равен кубу первого числа минус утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого числа на квадрат второго минус куб второго.
(a − b)3 = a3 − 3a2b + 3ab2 − b3
Запоминается эта формула как и предыдущая, но только с учётом чередования знаков «+» и «−». Перед первым членом «a3 » стоит «+» (по правилам математики мы его не пишем). Значит, перед следующим членом будет стоять «−», затем опять «+» и т.д.
(a − b)3 = + a3 − 3a2b + 3ab2 − b3 = a3 − 3a2b + 3ab2 − b3Сумма кубов
Не путать с кубом суммы!
Сумма кубов равна произведению суммы двух чисел на неполный квадрат разности.
a3 + b3 = (a + b)(a2 − ab + b2)Сумма кубов — это произведение двух скобок.
- Первая скобка — сумма двух чисел.
- Вторая скобка — неполный квадрат разности чисел. Неполным квадратом разности называют выражение:
(a2− ab + b2)
Данный квадрат неполный, так как посередине вместо удвоенного произведения обычное произведение чисел.
Разность кубов
Не путать с кубом разности!
Разность кубов равна произведению разности двух чисел на неполный квадрат суммы.
a3 − b3 = (a − b)(a2 + ab + b2)Будьте внимательны при записи знаков.
Применение формул сокращенного умножения
Следует помнить, что все формулы, приведённые выше, используется также и справа налево.
Многие примеры в учебниках рассчитаны на то, что вы с помощью формул соберёте многочлен обратно.
Примеры:
- a2 + 2a + 1 = (a + 1)2
- (aс − 4b)(ac + 4b) = a2c2 − 16b2
Таблицу со всеми формулами сокращённого умножения вы можете скачать в разделе «Шпаргалки».
Ваши комментарии
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи «ВКонтакте».
Оставить комментарий:
Сообщений: 2
112 = 100 + 1
вместо единицы не должно быть число 12?
Ответ для Pavel Asafov
Сообщений: 32
Благодарим за указанную ошибку. Опечатка будет исправлена.
Ответ для Кристина Костенко
Сообщений: 60
Ответ для Артур Хорішко
Сообщений: 197
(3 · x ?4)2=0,25
Применим формулу «разность квадратов» и решим квадратное уравнение, найдя корни.
9 · x2 ? 2 · 3 · 4 · x + 16 = 0,25
9x2-24x+15,75=0
D=9
x1=1,5
x2=1
1 |
6 |
Произведем проверку подставив в исходное выражение каждый из получившихся корней:
1) (3 · 1,5 ?4)2=0,25
0,52=0,25
2) (3 ·
7 |
6 |
-0,52=0,25