На главную страницу

Войти при помощи

Темы уроков
Начальная школа
- Геометрия: начальная школа
- Действия в столбик
- Деление с остатком
- Законы арифметики
- Периметр
- Порядок действий
- Разряды и классы. Разрядные слагаемые
- Счет в пределах 10 и 20
Математика 5 класс
- Взаимно обратные числа и дроби
- Десятичные дроби
- Натуральные числа
- Нахождение НОД и НОК
- Обыкновенные дроби
- Округление чисел
- Перевод обыкновенной дроби в десятичную
- Площадь
- Проценты
- Свойства сложения, вычитания, умножения и деления
- Среднее арифметическое
- Упрощение выражений
- Уравнения 5 класс
- Числовые и буквенные выражения
Математика 6 класс
- Масштаб
- Модуль числа
- Окружность. Площадь круга
- Отношение чисел
- Отрицательные и положительные числа
- Периодическая дробь
- Признаки делимости
- Пропорции
- Рациональные числа
- Система координат
- Целые числа
Алгебра 7 класс
- Алгебраические дроби
- Как применять формулы сокращённого умножения
- Многочлены
- Одночлены
- Системы уравнений
- Степени
- Уравнения
- Формулы сокращённого умножения
- Функция в математике
Геометрия 7 класс
Алгебра 8 класс
- Квадратичная функция. Парабола
- Квадратные неравенства
- Квадратные уравнения
- Квадратный корень
- Неравенства
- Системы неравенств
- Стандартный вид числа
- Теорема Виета
Алгебра 9 класс
- Возрастание и убывание функции
- Нули функции
- Область определения функции
- Отрицательная степень
- Среднее
геометрическое
Алгебра 10 класс
Алгебра 11 класс


Сравнение дробей
Русский язык

Также как и натуральные числа обыкновенные дроби можно сравнивать.
Рассмотрим две неравные дроби на числовой оси. Меньшая дробь будет располагаться левее, а большая — правее.

Равные дроби соответствует одной и той же точке на числовой оси.
На рисунке хорошо видно, что1 |
5 |
6 |
10 |
Сравнение дробей с одинаковыми знаменателями

Из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше.
1 |
5 |
4 |
5 |
В обеих дробях одинаковый знаменатель равный 5.
В первой дроби числитель равен 1 и он меньше числителя второй дроби, который равен 4.
Поэтому первая дробь1 |
5 |
4 |
5 |

Сравнение дробей с одинаковыми числителями

Из двух дробей с одинаковыми числителями больше та, у которой знаменатель меньше.
1 |
2 |
1 |
8 |

Правило выше легче понять, если представить, что у вас в руках куски торта. В первом случае торт разделили на 2 части (знаменатель дроби равен 2), и у вас в руках половина торта, а во втором — торт поделили на 8 частей, и у вас в руках маленькая часть торта.

Сравнение дробей с разными знаменателями

Чтобы сравнить дроби с разными знаменателями, нужно привести дроби к общему знаменателю.
После приведения дробей к общему знаменателю, дроби сравниваются по правилу сравнения дробей с одинаковыми знаменателями.
Пример. Сравним2 |
7 |
1 |
14 |
- Приводим дроби к общему знаменателю.
- Сравниваем дроби с одинаковыми знаменателями.
Это объясняется тем, что неправильная дробь всегда больше или равна 1, а правильная дробь всегда меньше 1.
