Карандаш и циркуль корень из буквы степень нарисованный самолет ручкой cos 60 лицо кота симона на парте

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

Список уроков
Скрыть меню

На главную страницу На главную страницу
Войти при помощи
Войти на сайт через ВКонтакте

Темы уроков


Начальная школа

Математика 5 класс

Математика 6 класс

Алгебра 7 класс

Алгебра 8 класс

Алгебра старшая школа

30 минут занятий в день заменяют двое бессонных суток перед экзаменом. Администратор
На главную страницу На главную страницу на главную

Решение сложных уравнений. 5 класс

Найти репетиторапортфель
лупа Скрепки

Под сложными (составными) уравнениями мы понимаем уравнения, которые содержат два или более арифметических действия.

Решение таких уравнений выполняется по тем же правилам, которые мы рассмотрели на странице «Решение простых уравнений 5 класс» в этой же теме.

Но решение составных уравнений производится в определённой последовательности.

Рассмотрим уравнение:

решение сложных уравнений
  1. Расставляем порядок действий в уравнении. порядок действий в решении составных уравнений
  2. Определяем неизвестное по последнему действию. Последнее действие в данном уравнении — это вычитание. Обращаем ваше внимание, что на этом этапе наше неизвестное — это «5y», и именно его мы рассматриваем как уменьшаемое. порядок действий в решении сложных уравнений
  3. Решаем как простое уравнение и находим «5y». Вспомним правило для нахождения неизвестного уменьшаемого.

    Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.

    решение простого уравнения
  4. Теперь перед нами простое уравнение. Необходимо найти неизвестный множитель. Решаем уравнение по следующему правилу.

    Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.

    решение простого уравнения для 5 класса
  5. Не забудем выполнить проверку. проверка ответа уравнения

Всё верно. Значит уравнение решено правильно.

Другой способ решения сложных уравнений

Некоторые сложные (составные уравнения) можно решать другим способом. Зная и умея применять свойства сложения и вычитания, а также свойства умножения и деления, уравнения решаются следующем образом.

Рассмотрим уравнение.

(x + 54) − 28 = 38
  1. Упрощаем выражение, стоящее в левой части уравнения, используя одно из свойств вычитания.

    Чтобы из суммы отнять число, нужно это число вычесть из одного слагаемого и прибавить результат вычитания к другому слагаемому.

    другой способ решения составного уравнения
  2. Далее решаем простое уравнение, пользуясь правилом нахождения неизвестного слагаемого.
    x = 38 − 26

    x = 12
  3. Выполняем проверку.

    (12 + 54) − 28 = 38

    66 − 28 = 38

    38 = 38

Упрощение выражений в уравнениях

Запомните! !

Если в уравнении встречается выражения, которые можно упростить, то вначале упрощаем выражения, и только после этого решаем уравнение.

Решить уравнение.

5x + 2x = 49

Левую часть уравнения можно упростить. Сделаем это.

7x = 49

Теперь решим простое уравнение по правилу нахождения неизвестного множителя.

x = 49 : 7 x = 7

Завершив пример, выполним проверку.

проверка корня уравнения после его решения