Карандаш и циркуль Джон Сноу жив! 25 процентов как дробь надпись на парте леонид из спарты надпись Уолтер Вайт

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

Список уроков
Скрыть меню

На главную страницу На главную страницу
Войти при помощи
Войти на сайт через ВКонтакте

Темы уроков


Начальная школа

Математика 5 класс

Математика 6 класс

Алгебра 7 класс

Алгебра 8 класс

Алгебра старшая школа

Не пером пишут, а умом.В.И. Даль
На главную страницу На главную страницу на главную

Задача на растворы

лупа Скрепки
Найти репетиторапортфель

Для того, чтобы решать задачи на растворы и концентрацию, необходимо чётко понимать, что называется концентрацией раствора.

Запомните! !

Концентрация раствора — это часть, которую составляет масса растворённого вещества от массы всего раствора.

  • 9%-я концентрация раствора соли — это 9 грамм соли в 100 граммах раствора.

Задача № 322 (2) из Петерсона 6 класс (2010 г.)

Килограмм соли растворили в 9 л воды. Чему равна концентрация полученного раствора? (Масса 1 л воды составляет 1 кг)

Используя определение концентрации данное выше, решим задачу следующим образом.

  • 1 кг — масса растворённого вещества (соли)
  • 9 кг — масса воды в растворе (не путать с общей массой раствора)
  • 9 + 1 = 10 кг — общая масса раствора.
концентрация раствора

Ответ: 10% — концентрация раствора.

Задача № 353(2) из Петерсона 6 класс (2010 г.)

Теперь решим обратную задачу.

Сколько соли получится при выпаривании 375 граммов 12%-го раствора?

Чтобы найти массу выпаренной соли из раствора, умножим общую массу раствора на процент концентрации. Не забудем предварительно перевести процент в десятичную дробь.

задача на концентрацию раствора

Ответ: 45 г соли.

Сложная задача на растворы

В растворе 40% соли. Если добавить 120 г соли, то процентное содержание соли станет равным 70. Сколько грамм соли было первоначально в растворе?

Для составления пропорции обозначим за «x» первоначальную массу соли в растворе, а за «y» массу воды в растворе. Так как концентрация соли в исходном растворе 40%, то соответственно вода составляет

100% − 40%= 60%

Изобразим графически условия задачи.

графическое изображение задачи на концентрацию

Составим пропорцию, связывающую эти величины до добавления соли.

пропорция и концентрация раствора

Для решения задачи нам надо определить какая из неизвестных («x» или «y») остаётся неизменной после добавления соли.

Этой величиной является масса воды в растворе «y».

Выразим её, учитывая изменения в растворе после добавления соли.

  • (x + 120) г — масса соли в новом растворе
  • (100% − 70% = 30% — процентное содержание воды в новом растворе.

Составим пропорцию аналогично предыдущей, но с учётом изменений произошедших после добавления соли.

пропорция и концентрация раствора

Так как масса воды осталось неизменной после добавления соли, приравняем её значения до и после добавления соли и решим уравнение.

решение задачи на концентрацию раствора

Ответ: 48 г — масса соли в первоначальном растворе.