Карандаш и циркуль Цой жив! квадрат разности надпись на парте рок звезда надпись на парте люблю себя надпись на парте

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

Войти при помощи
Войти на сайт через ВКонтакте

Темы уроков


Начальная школа

Математика 5 класс

Математика 6 класс

Алгебра 7 класс

Алгебра 8 класс

Алгебра старшая школа

Думать и творить, творить и думать — вот основа всякой мудрости. Иоганн Вольфганг фон Гёте
На главную страницу На главную страницу на главную

Решение линейных уравнений 7 класс

Найти репетиторапортфель
лупа Скрепки

Для решения линейных уравнений используют два основных правила (свойства).

Свойство № 1
или
правило переноса

Запомните! !

При переносе из одной части уравнения в другую член уравнения меняет свой знак на противоположный.

Давайте разберём правило переноса на примере. Пусть нам требуется решить линейное уравнение.

пример решения линейного уравнения x + 3 = 5

Вспомним, что у любого уравнения есть левая и правая часть.

левая и правая часть уравнения

Перенесем число «3» из левой части уравнения в правую.

Так как в левой части уравнения у числа «3» был знак «+», значит в правую часть уравнения «3» перенесется со знаком «».

правило переноса для уравнений

Полученное числовое значение «x = 2» называют корнем уравнения.

Важно! Галка

Не забывайте после решения любого уравнения записывать ответ.

Рассмотрим другое уравнение.

5x = 4x + 9

По правилу переноса перенесем «4x» из левой части уравнения в правую, поменяв знак на противоположный.

Несмотря на то, что перед «4x» не стоит никакого знака, мы понимаем, что перед «4x» стоит знак «+».

5x = 4x + 9
5x = +4x + 9
5x 4x = 9

Теперь приведем подобные и решим уравнение до конца.

5x 4x = 9
x = 9
Ответ: x = 9

Свойство № 2
или
правило деления

Запомните! !

В любом уравнении можно разделить левую и правую часть на одно и то же число.

Но нельзя делить на неизвестное!

Разберемся на примере, как использовать правило деления при решении линейных уравнений.

пример решения уравнения 4x = 8

Число «4», которое стоит при «x», называют числовым коэффициентом при неизвестном.

числовой коэффициент при неизвестном

Между числовым коэффициентом и неизвестном всегда стоит действие умножение.

Чтобы решить уравнение необходимо сделать так, чтобы при «x» стоял коэффициент «1».

Давайте зададим себе вопрос: «На что нужно разделить «4», чтобы
получить «1»?». Ответ очевиден, нужно разделить на «4».

Используем правило деления и разделим левую и правую части уравнения на «4». Не забудьте, что делить нужно и левую, и правую части.

правило деления в урванениях

Используем сокращение дробей и решим линейное уравнение до конца.

решение линейного уравнения до конца

Как решить уравнение, если «x» отрицательное

Часто в уравнениях встречается ситуация, когда при «x» стоит отрицательный коэффициент. Как, например, в уравнении ниже.

−2x = 10

Чтобы решить такое уравнение, снова зададим себе вопрос: «На что нужно разделить «−2», чтобы получить «1»?». Нужно разделить на «−2».

−2x = 10         |:(−2)
−2x
−2
=
10
−2
                 
x = −5                 
Ответ: x = −5           
Важно! Галка

При делении на отрицательное число помните про правило знаков.

Примеры решения линейных уравнений

Рассмотрим другие примеры решения линейных уравнений. Обычно для решения уравнений нужно применять оба свойства (правило переноса и правило деления).

Также требуется вспомнить правило раскрытия скобок и правило приведения подобных.

  • 25x − 1 = 9
    25x = 9 + 1
    25x = 10        |: 25
    25x
    25
    =
    10
    25

    x =
    2
    5

    Ответ: x =
    2
    5

  • 11(y − 4) + 10(5 − 3y) − 3(4 − 3y) = −6
    11y44 + 5030y12 + 9y = −6
    11y30y + 9y44 + 5012 = −6
    20y − 30y + 6 − 12 = −6
    −10y − 6 = −6
    −10y = −6 + 6
    −10y = 0         |:(−10)
    −10y
    −10
    =
    0
    −10

    y = 0

    Ответ: y = 0