Карандаш и циркуль стьюи на парте cos 60 график функций y = x 3 на приведений на парте умножение дробей надпись на парте

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

Список уроков
Скрыть меню

На главную страницу На главную страницу
Войти при помощи
Войти на сайт через ВКонтакте

Темы уроков


Начальная школа

Математика 5 класс

Математика 6 класс

Алгебра 7 класс

Геометрия 7 класс

Алгебра 8 класс

Алгебра 9 класс

Алгебра 10 класс

Алгебра 11 класс

Есть люди, которые не совершают ошибок. Это те, за кого думают другие.Хенрик Ягодзиньский
На главную страницу На главную страницу на главную

Решение линейных уравнений 7 класс

лупа Скрепки
Найти репетиторапортфель Поддержать сайтспасибо

Для решения линейных уравнений используют два основных правила (свойства).

Свойство № 1
или
правило переноса

Запомните! !

При переносе из одной части уравнения в другую член уравнения меняет свой знак на противоположный.

Давайте разберём правило переноса на примере. Пусть нам требуется решить линейное уравнение.

пример решения линейного уравнения x + 3 = 5

Вспомним, что у любого уравнения есть левая и правая часть.

левая и правая часть уравнения

Перенесем число «3» из левой части уравнения в правую.

Так как в левой части уравнения у числа «3» был знак «+», значит в правую часть уравнения «3» перенесется со знаком «».

правило переноса для уравнений

Полученное числовое значение «x = 2» называют корнем уравнения.

Важно! Галка

Не забывайте после решения любого уравнения записывать ответ.

Рассмотрим другое уравнение.

5x = 4x + 9

По правилу переноса перенесем «4x» из левой части уравнения в правую, поменяв знак на противоположный.

Несмотря на то, что перед «4x» не стоит никакого знака, мы понимаем, что перед «4x» стоит знак «+».

5x = 4x + 9
5x = +4x + 9
5x 4x = 9

Теперь приведем подобные и решим уравнение до конца.

5x 4x = 9
x = 9
Ответ: x = 9

Свойство № 2
или
правило деления

Запомните! !

В любом уравнении можно разделить левую и правую часть на одно и то же число.

Но нельзя делить на неизвестное!

Разберемся на примере, как использовать правило деления при решении линейных уравнений.

пример решения уравнения 4x = 8

Число «4», которое стоит при «x», называют числовым коэффициентом при неизвестном.

числовой коэффициент при неизвестном

Между числовым коэффициентом и неизвестном всегда стоит действие умножение.

Чтобы решить уравнение необходимо сделать так, чтобы при «x» стоял коэффициент «1».

Давайте зададим себе вопрос: «На что нужно разделить «4», чтобы
получить «1»?». Ответ очевиден, нужно разделить на «4».

Используем правило деления и разделим левую и правую части уравнения на «4». Не забудьте, что делить нужно и левую, и правую части.

правило деления в урванениях

Используем сокращение дробей и решим линейное уравнение до конца.

решение линейного уравнения до конца

Как решить уравнение, если «x» отрицательное

Часто в уравнениях встречается ситуация, когда при «x» стоит отрицательный коэффициент. Как, например, в уравнении ниже.

−2x = 10

Чтобы решить такое уравнение, снова зададим себе вопрос: «На что нужно разделить «−2», чтобы получить «1»?». Нужно разделить на «−2».

−2x = 10         |:(−2)
−2x
−2
=
10
−2
                 
x = −5                 
Ответ: x = −5           
Важно! Галка

При делении на отрицательное число помните про правило знаков.

Примеры решения линейных уравнений

Рассмотрим другие примеры решения линейных уравнений. Обычно для решения уравнений нужно применять оба свойства (правило переноса и правило деления).

Также требуется вспомнить правило раскрытия скобок и правило приведения подобных.

  • 25x − 1 = 9
    25x = 9 + 1
    25x = 10        |: 25
    25x
    25
    =
    10
    25

    x =
    2
    5

    Ответ: x =
    2
    5

  • 11(y − 4) + 10(5 − 3y) − 3(4 − 3y) = −6
    11y44 + 5030y12 + 9y = −6
    11y30y + 9y44 + 5012 = −6
    20y − 30y + 6 − 12 = −6
    −10y − 6 = −6
    −10y = −6 + 6
    −10y = 0         |:(−10)
    −10y
    −10
    =
    0
    −10

    y = 0

    Ответ: y = 0