Карандаш и циркуль не пишите на партах рок звезда надпись на парте нарисованный самолет ручкой в раздумии мем на парте

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

Список уроков
Скрыть меню

На главную страницу На главную страницу
Войти при помощи
Войти на сайт через ВКонтакте

Темы уроков


Начальная школа

Математика 5 класс

Математика 6 класс

Алгебра 7 класс

Алгебра 8 класс

Алгебра старшая школа

Если точно знаешь, что хочешь сказать, то скажешь хорошо. Гюстав Флобер
На главную страницу На главную страницу на главную

Как решать задачи на функцию

Найти репетиторапортфель
лупа Скрепки

Прежде чем перейти к разбору решения задач с функциями обязательно прочитайте урок «Что такое функция в математике».

После того, как вы действительно поймете, что такое функция (возможно, придется прочитать урок не один раз) вы с бóльшей уверенностью сможете решать задания с функциями.

В этом уроке мы разберем, как решать основные типы задач на функцию и графики функций.

Как получить значение функции

Рассмотрим задание. Функция задана формулой «y = 2x − 1»

  1. Вычислить «y» при «x = 15»
  2. Найти значение «x», при котором значение «y» равно «−19».

Для того, чтобы вычислить «y» при «x = 15» достаточно подставить в функцию вместо «x» необходимое числовое значение.

Запись решения выглядит следующим образом.

y(15) = 2 · 15 − 1 = 30 − 1 = 29

Для того, чтобы найти «x» по известному «y», необходимо подставить вместо «y» в формулу функции числовое значение.

То есть теперь наоборот, для поиска «x» мы подставляем в функцию «y = 2x − 1» вместо «y» число «−19» .

−19 = 2x − 1

Мы получили линейное уравнение с неизвестным «x», которое решается по правилам решения линейных уравнений.

Запомните! !

Не забывайте про правило переноса в уравнениях.

При переносе из левой части уравнения в правую (и наоборот) буква или число меняет знак на противоположный.

−19 = 2x − 1
0 = 2x − 1 + 19
−2x = −1 + 19
−2x = 18

Как и при решении линейного уравнения, чтобы найти неизвестное, сейчас требуется умножить и левую, и правую часть на «−1» для смены знака.

−2x = 18       | · (−1)
2x = −18                

Теперь разделим и левую, и правую часть на «2», чтобы найти «x» .

2x = 18     | (: 2)
x = 9                

Как проверить верно ли равенство для функции

Рассмотрим задание. Функция задана формулой «f(x) = 2 − 5x».

Верно ли равенство «f(−2) = −18»?


Чтобы проверить верно ли равенство, нужно подставить в функцию «f(x) = 2 − 5x» числовое значение «x = −2» и сопоставить с тем, что получится при расчетах.

Важно! Галка

Когда подставляете отрицательное число вместо «x», обязательно заключайте его в скобки.

Не забывайте использовать правило знаков.

Неправильно

неверная подставновка отрицательного числа в функцию

Правильно

верная подставновка отрицательного числа в функцию

С помощью расчетов мы получили «f(−2) = 12».

Это означает, что «f(−2) = −18» для функции «f(x) = 2 − 5x» не является верным равенством.

Как проверить, что точка принадлежит графику функции

Рассмотрим функцию «y = x2 −5x + 6»

Требуется выяснить, принадлежит ли графику этой функции точка с координатами (1; 2).


Для этой задачи нет необходимости, строить график заданной функции.

Запомните! !

Чтобы определить, принадлежит ли точка функции, достаточно подставить её координаты в функцию (координату по оси «Ox» вместо «x» и координату по оси «Oy» вместо «y»).

Если получится верное равенство, значит, точка принадлежит функции.

Вернемся к нашему заданию. Подставим в функцию «y = x2 − 5x + 6» координаты точки (1; 2).

Вместо «x» подставим «1». Вместо «y» подставим «2».

2 = 12 − 5 · 1 + 6
2 = 1 − 5 + 6
2 = −4 + 6
2 = 2 (верно)

У нас получилось верное равенство, значит, точка с координатами (1; 2) принадлежит заданной функции.

Теперь проверим точку с координатами (0; 1). Принадлежит ли она
функции «y = x2 − 5x + 6»?

Вместо «x» подставим «0». Вместо «y» подставим «1».

1 = 02 − 5 · 0 + 6
1 = 0 − 0 + 6
1 = 6 (неверно)

В этом случае мы не получили верное равенство. Это означает, что точка с координатами (0; 1) не принадлежит функции «y = x2 − 5x + 6»

Как получить координаты точки функции

С любого графика функции можно снять координаты точки. Затем необходимо убедиться, что при подстановке координат в формулу функции получается верное равенство.

Рассмотрим функцию «y(x) = −2x + 1». Её график мы уже строили в предыдущем уроке.

график функции y = 2x + 1

Найдем на графике функции «y(x) = −2x + 1», чему равен «y» при x = 2.

Для этого из значения «2» на оси «Ox» проведем перпендикуляр к графику функции. Из точки пересечения перпендикуляра и графика функции проведем еще один перпендикуляр к оси «Oy».

получение координаты y с графика функции

Полученное значение «−3» на оси «Oy» и будет искомым значением «y».

Убедимся, что мы правильно сняли координаты точки для x = 2
в функции «y(x) = −2x + 1».

Для этого мы подставим x = 2 в формулу функции «y(x) = −2x + 1». Если мы правильно провели перпендикуляр, мы также должны получить в итоге y = −3.

y(2) = −2 · 2 + 1 = −4 + 1 = −3

При расчетах мы также получили y = −3.

Значит, мы правильно получили координаты с графика функции.

Важно! Галка

Все полученные координаты точки с графика функции обязательно проверяйте подстановкой значений «x» в функцию.

При подстановке числового значения «x» в функцию в результате должно получиться то же значение «y», которое вы получили на графике.

При получении координат точек с графика функции высока вероятность, что вы ошибетесь, т.к. проведение перпендикуляра к осям выполняется «на глазок».

Только подстановка значений в формулу функции дает точные результаты.