При сложении дробей могут встретиться разные случаи.

Сложение дробей с одинаковыми знаменателями

Такой случай наиболее простой. При сложении дробей с равными знаменателями складывают числители, а знаменатель оставляют тот же.

Пример.

сложение дробей с одинаковыми знаменателями

C помощью букв это правило сложения можно записать так:

сложение дробей с одинаковыми знаменателями запись при помощи букв
магнит запомните ! магнит

Записывая ответ, проверьте нельзя ли полученную дробь сократить.

Сложение дробей с разными знаменателями

Чтобы сложить дроби с разными знаменателями нужно воспользоваться следующими правилами.

  1. Привести данные дроби к наименьшему общему знаменателю (НОЗ). Для этого найти наименьшее общее кратное знаменателей.

Пример. Сложить дроби.

сложение дробей с разными знаменателями

Как найти общий знаменатель

Находим НОК (15, 18).

нахождение общего знаменателя НОК (15, 18) = 3 • 2 • 3 • 5 = 90
  1. Найти дополнительные множители для каждой дроби. Для этого наименьший общий знаменатель (НОК из пункта 1) делим по очереди на знаменатель каждой дроби. Полученные числа и будут дополнительными множителями для каждой из дробей. Множители записываем над числителем дроби справа сверху.

    90 : 15 = 6 - дополнительный множитель для дроби 3/15.

    90 : 18 = 5 - дополнительный множитель для дроби 4/18.

    сложение дробей с разными знаменателями, запись дополнительных множителей.
  2. Числитель и знаменатель каждой дроби умножаем на свой дополнительный множитель, пользуясь основным свойством дроби. После умножения в знаменателях обеих дробей должен получиться наименьший общий знаменатель. Затем складываем дроби как дроби с одинаковыми знаменателями. сложение дробей с разными знаменателями
  3. Проверяем полученную дробь.
    • Eсли в результате получилась неправильная дробь, результат записываем в виде смешанного числа. Проверим нашу дробь. 38 < 90 У нас дробь правильная.
    • Если в результате получилась сократимая дробь, необходимо выполнить сокращение. сокращение полученной дроби
  4. Ещё раз весь пример целиком. пример сложения дробей

Сложение смешанных чисел

Сочетательное и переместитительное свойства сложения позволяют привести сложение смешанных чисел к сложению их целых частей и к сложению их дробных частей.

Чтобы сложить смешанные числа нужно.

  1. Отдельно сложить их целые части.

    Пример.

    сложение смешанных чисел

    Складываем целые части.

    3 + 4 = 7
  2. Отдельно сложить дробные части.

    Если у дробных частей знаменатели разные, то сначала приводим их к общему знаменателю, а затем складываем.

    сложение дробей с разными знаменателями
  3. Сложить полученные результаты из пунктов 1 и 2. сложение целой части и дроби
  4. Если при сложении дробных частей получилась неправильная дробь, то нужно выделить целую часть из этой дроби и прибавить к полученной в пункте 1 целой части.

Ещё один пример на сложение дробей.

пример сложения дробей